Chapter 9: Planning and Learning

Objectives of this chapter:

[ Use of environment models

(3 Integration of planning and learning methods
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Planning

Models

(O Planning: any computational process that uses a model to

create or improve a policy
planning

model -
(1 Planning in Al

= state-space planning

= plan-space planning (e.g., partial-order planner)

(0 We take the following (unusual) view:

= all state-space planning methods involve computing

value functions, either explicitly or implicitly
= they all apply backups to simulated experience

simulated backups

model o
experience
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(0 Model: anything the agent can use to predict how the
environment will respond to its actions

(A Distribution model: description of all possibilities and their
probabilities

» e.g, Pl andR{ forall s, s', and a EA(s)
(O Sample model: produces sample experiences
= e.g., a simulation model
(3 Both types of models can be used to produce simulated
experience

(3 Often sample models are much easier to come by
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Planning Cont.

values ———— policy

(3 Classical DP methods are state-space planning methods
(0 Heuristic search methods are state-space planning methods
(1 A planning method based on Q-learning:

Do forever:
1. Select a state, s € 8, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain a sample next state, s’,
and a sample next reward, r
3. Apply one-step tabular Q-learning to s, a, 5”, r:
0(s,a) < Q(s,a) + o [r + y maxy Q(s', a') — Q(s, a)]

Random-Sample One-Step Tabular Q-Planning
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Learning, Planning, and Acting

(3 Two uses of real experience: value/policy
= model learning: to improve
the model _
= direct RL: to directly planning dg?_m
improve the value function
and policy i
model experience

(3 Improving value function
and/or policy via a model is
sometimes called indirect RL or model
model-based RL. Here, we call learning
it planning.
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The Dyna Architecture (Sutton 1990)

/N

| Policy/value functions |

planning update

direct RL simulated
update experience
real
experience
search
learning control
Model

[Environment]
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Direct vs. Indirect RLL

[ Indirect (model-based) [ Direct methods

methods: = simpler
= make fuller use of = not affected by bad
experience: get better models
policy with fewer
environment
interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel
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The Dyna-Q Algorithm

Initialize Q(s, @) and Model(s, a) for all s € 8 and a € A(s)
Do forever:
(a) s <« current (nonterminal) state
(b) a < e-greedy(s, Q)
(c) Execute action a; observe resultant state, s, and reward, r direct
@ 06,8 « 06,0 +a[r +y maxg 06" a) - Q)] Ry
(f) Repeat N times:
s « random previously observed state

a <« random action previously taken in s
s, r « Model(s, a)

OGS, 3y

0(s,a) < Q(s,a) + a [r + y maxy Q(s',a') — Q5. a)]

() Model(s,a) < s',r (assuming deterministic environment) <- model |

<— planning
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Dyna-Q on a Simple Maze
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When the Model is Wrong:
Blocking Maze

The changed environment is harder

150

Cumulative
reward
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Dyna-Q Snapshots: Midway in 2nd Episode
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Shortcut Maze
The changed environment is easier
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What is Dyna-Q*?

(3 Uses an “exploration bonus”:
= Keeps track of time since each state-action pair was
tried for real
= An extra reward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

= The agent actually “plans” how to visit long unvisited
states
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Prioritized Sweeping

Initialize QQ(s,a), Model(s,a), for all s, a, and PQueue to empty
Do forever:
(a) s « current (nonterminal) state
(b) a «— policy(s, Q)
(¢) Execute action a; observe resultant state, s', and reward, r
(d) Model(s,a) — s',r
(e) p e |r +~ymax, Q(s",a") — Q(s, a)l.
(f) if p = 0, then insert s,a into PQueue with priority p
(g) Repeat N times, while PQueue is not empiy:
s,a «— first(PQueue)
s« Model(s,a)
Q(s,a) — Q(s,a) + (t[:' o max, Q(s',a’)
Repeat, for all s, a predicted to lead to s:
7« predicted reward
p— |F+ymax, Q(s,a) — Q(s,a)l|.
if p > @ then insert 5, a into PQueue with priority p

Qs a)
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Prioritized Sweeping

(0 Which states or state-action pairs should be generated
during planning?

(0 Work backwards from states whose values have just
changed:

= Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change

= When a new backup occurs, insert predecessors
according to their priorities

= Always perform backups from first in queue
(3 Moore and Atkeson 1993; Peng and Williams, 1993
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Prioritized Sweeping vs. Dyna-Q

Both use N=5 backups per
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Rod Maneuvering (Moore and Atkeson 1993)
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Full vs. Sample Backups

full
backups
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Number of max O(s’,a’) computations

a

b successor states, equally likely; initial error = 1;
assume all next states’ values are correct
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Full and Sample (One-Step) Backups
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17 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18
Trajectory Sampling

(A Trajectory sampling: perform backups along simulated
trajectories

(3 This samples from the on-policy distribution
(O Advantages when function approximation is used

(3 Focusing of computation: can cause vast uninteresting parts
of the state space to be (usefully) ignored:

Initial
states

Reachable under Irrelevant states

optimal control
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Trajectory Sampling Experiment Heuristic Search

(7 one-step full tabular backups (O Used for action selection, not for changing a value function
(3 uniform: cycled through all state- 1000 States (=heuristic evaluation function)
action pairs Jalueol - . .
A on-policy: backed up along under O Backed-up values are computed, but typically discarded
- . greedy
simulated trajectories Pt [ Extension of the idea of a greedy policy — only deeper
3 iggéﬁgﬁ?}ggiﬁ?ﬁﬁf&sks (3 Also suggests ways to select states to backup: smart
Computation time, in full backups 3 .
[ 2 actions for each state, each with fOCUSll’lg.
b equally likely next states onpol
3 .1 prob of transition to terminal 10,000 STATES
state Value of
3 expected reward on each startstate >
transition selected from mean 0 greedy

. N policy
variance 1 Gaussian

1 000 00000 150000 200000
Computation time, in full backups
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Summary

(0 Emphasized close relationship between planning and
learning

(O Important distinction between distribution models and
sample models

(0 Looked at some ways to integrate planning and learning
= synergy among planning, acting, model learning
(1 Distribution of backups: focus of the computation
= trajectory sampling: backup along trajectories
= prioritized sweeping
= heuristic search
(O Size of backups: full vs. sample; deep vs. shallow
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