Chapter 9: Planning and Learning

Objectives of this chapter:

- Use of environment models
- ☐ Integration of planning and learning methods

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning

☐ Planning: any computational process that uses a model to create or improve a policy

model planning policy

- ☐ Planning in AI:
 - state-space planning
 - plan-space planning (e.g., partial-order planner)
- ☐ We take the following (unusual) view:
 - all state-space planning methods involve computing value functions, either explicitly or implicitly
 - they all apply backups to simulated experience

Models

- ☐ Model: anything the agent can use to predict how the environment will respond to its actions
- Distribution model: description of all possibilities and their probabilities
 - e.g., $P_{ss'}^a$ and $R_{ss'}^a$ for all s, s', and $a \in A(s)$
- □ Sample model: produces sample experiences
 - e.g., a simulation model
- ☐ Both types of models can be used to produce simulated experience
- ☐ Often sample models are much easier to come by

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

2

Planning Cont.

- ☐ Classical DP methods are state-space planning methods
- ☐ Heuristic search methods are state-space planning methods
- ☐ A planning method based on Q-learning:

Do forever:

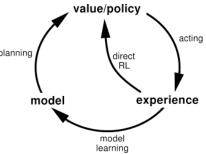
- 1. Select a state, $s \in \mathcal{S}$, and an action, $a \in \mathcal{A}(s)$, at random
- Send s, a to a sample model, and obtain a sample next state, s', and a sample next reward, r
- 3. Apply one-step tabular Q-learning to s, a, s', r: $Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') Q(s, a)\right]$

Random-Sample One-Step Tabular Q-Planning

3

Learning, Planning, and Acting

- ☐ Two uses of real experience:
 - model learning: to improve the model
 - direct RL: to directly improve the value function and policy
- ☐ Improving value function and/or policy via a model is sometimes called indirect RL or model-based RL. Here, we call it planning.



planning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Direct vs. Indirect RL

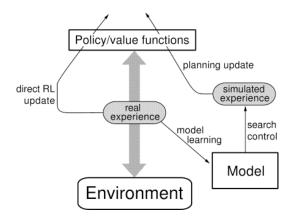
- ☐ Indirect (model-based) methods:
- simpler

☐ Direct methods

- make fuller use of experience: get better policy with fewer environment interactions
- not affected by bad models

But they are very closely related and can be usefully combined: planning, acting, model learning, and direct RL can occur simultaneously and in parallel

The Dyna Architecture (Sutton 1990)



The Dyna-Q Algorithm

```
Initialize Q(s, a) and Model(s, a) for all s \in S and a \in A(s)
Do forever:
   (a) s \leftarrow current (nonterminal) state
   (b) a \leftarrow \epsilon-greedy(s, Q)
   (c) Execute action a; observe resultant state, s', and reward, r
   (d) Q(s,a) \leftarrow Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]
   (e) Model(s, a) \leftarrow s', r
                                       (f) Repeat N times:
          s \leftarrow random previously observed state
          a \leftarrow random action previously taken in s
                                                                              ← planning
          s', r \leftarrow Model(s, a)
           Q(s,a) \leftarrow Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]
```

Dyna-Q on a Simple Maze

Steps per $_{400}$ =

Dyna-Q Snapshots: Midway in 2nd Episode

WITHOUT PLANNING (N=0)

G

S

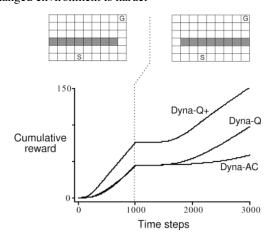
WITH PLANNING ($N=50$)								
	-	-	+	+	-	+		G
			ŧ	-	¥	ţ		1
S			-	+	-	ţ		1
			-	-	-	-	-	f
			-	1		-	-	f
		-	1	-	-	1	1	•

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

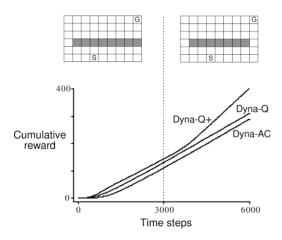
When the Model is Wrong: Blocking Maze

The changed environment is harder



Shortcut Maze

The changed environment is easier



11

10

What is Dyna-Q⁺?

- Uses an "exploration bonus":
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting
 - The agent actually "plans" how to visit long unvisited states

Prioritized Sweeping

- ☐ Which states or state-action pairs should be generated during planning?
- ☐ Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- ☐ Moore and Atkeson 1993; Peng and Williams, 1993

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

13

15

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

14

Prioritized Sweeping

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Do forever:

- (a) $s \leftarrow \text{current (nonterminal) state}$
- (b) $a \leftarrow policy(s, Q)$
- (c) Execute action a; observe resultant state, s', and reward, r
- (d) $Model(s, a) \leftarrow s', r$
- (e) $p \leftarrow |r + \gamma \max_{a'} Q(s', a') Q(s, a)|$.
- (f) if $p > \theta$, then insert s, a into PQueue with priority p
- (g) Repeat N times, while PQueue is not empty:

 $s, a \leftarrow first(PQueue)$

 $s', r \leftarrow Model(s, a)$

 $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

Repeat, for all \bar{s} , \bar{a} predicted to lead to s:

 $\bar{r} \leftarrow \text{predicted reward}$

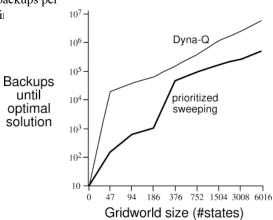
 $p \leftarrow |\bar{r} + \gamma \max_a Q(s, a) - Q(\bar{s}, \bar{a})|.$

if $p > \theta$ then insert \bar{s}, \bar{a} into PQueue with priority p

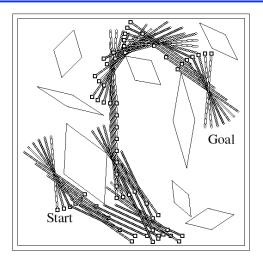
Prioritized Sweeping vs. Dyna-Q

Both use N=5 backups per environmental in

until



Rod Maneuvering (Moore and Atkeson 1993)

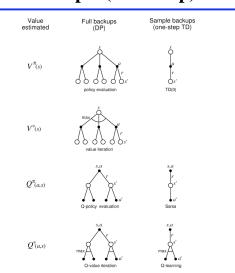


R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

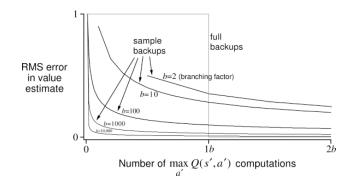
17

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Full and Sample (One-Step) Backups



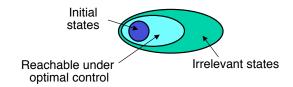
Full vs. Sample Backups



b successor states, equally likely; initial error = 1; assume all next states' values are correct

Trajectory Sampling

- ☐ Trajectory sampling: perform backups along simulated trajectories
- ☐ This samples from the on-policy distribution
- ☐ Advantages when function approximation is used
- ☐ Focusing of computation: can cause vast uninteresting parts of the state space to be (usefully) ignored:



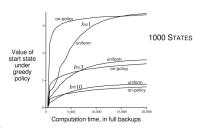
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

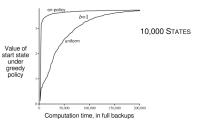
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

18

Trajectory Sampling Experiment

- one-step full tabular backups
- uniform: cycled through all stateaction pairs
- on-policy: backed up along simulated trajectories
- ☐ 200 randomly generated undiscounted episodic tasks
- 2 actions for each state, each with b equally likely next states
- ☐ .1 prob of transition to terminal state
- expected reward on each transition selected from mean 0 variance 1 Gaussian



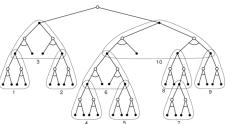


R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Heuristic Search

- ☐ Used for action selection, not for changing a value function (=heuristic evaluation function)
- ☐ Backed-up values are computed, but typically discarded
- ☐ Extension of the idea of a greedy policy only deeper
- ☐ Also suggests ways to select states to backup: smart focusing:



22

Summary

- ☐ Emphasized close relationship between planning and learning
- ☐ Important distinction between distribution models and sample models
- ☐ Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- ☐ Distribution of backups: focus of the computation
 - trajectory sampling: backup along trajectories
 - prioritized sweeping
 - heuristic search
- ☐ Size of backups: full vs. sample; deep vs. shallow